
Declarative Mocking

Hesam Samimi, Rebecca Hicks, Ari Fogel, Todd Millstein
Computer Science Department

University of California, Los Angeles, USA
{hesam, rdhicks, arifogel, todd}@cs.ucla.edu

ABSTRACT
Test-driven methodologies encourage testing early and of-
ten. Mock objects support this approach by allowing a com-
ponent to be tested before all depended-upon components
are available. Today mock objects typically reflect little to
none of an object’s intended functionality, which makes it
difficult and error-prone for developers to test rich proper-
ties of their code. This paper presents declarative mocking,
which enables the creation of expressive and reliable mock
objects with relatively little effort. In our approach, de-
velopers write method specifications in a high-level logical
language for the API being mocked, and a constraint solver
dynamically executes these specifications when the meth-
ods are invoked. In addition to mocking functionality, this
approach seamlessly allows data and other aspects of the en-
vironment to be easily mocked. We have implemented the
approach as an extension to an existing tool for executable
specifications in Java called PBnJ. We have performed an
exploratory study of declarative mocking on several existing
Java applications, in order to understand the power of the
approach and to categorize its potential benefits and limi-
tations. We also performed an experiment to port the unit
tests of several open-source applications from a widely used
mocking library to PBnJ. We found that more than half of
these unit tests can be enhanced, in terms of the strength of
properties and coverage, by exploiting executable specifica-
tions, with relatively little additional developer effort.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; K.6.3 [Software Management]: Software
development

General Terms
Verification, Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’13, July 15-20, 2013, Lugano, Switzerland
Copyright 13 ACM 978-1-4503-2159-4/13/07 ...$15.00.

Keywords
mock objects, executable specifications

1. INTRODUCTION
In every stage of software development, programmers rely

on testing to gain confidence in their code and guide exten-
sions and modifications. This is particularly the case with
test-driven and agile development paradigms [1, 2], where
unit tests guide the design effort from the start. A dilemma
that developers frequently face during the early stages of
development, however, is that their code depends on other
pieces of software that are not yet available. For example,
another team may have not yet delivered a necessary piece
of the software. Another common scenario is when code re-
lies on large infrastructure such as databases, webservers,
or data centers, but specific options have not been decided,
or there is too much effort or cost to set these up properly
during development and testing.

Software engineers have devised a technique, known as
mocking, to deal with these situations. Mocking leverages
the fact that although the code under test needs to interact
with pieces of software that are not available, typically the
interface (API) and intended behavior of that software are
known. For instance, while the specific database to use may
not have been determined, a Java client of this database may
assume that the Java Database Connectivity (JDBC) API
will be used. Mock objects [3, 4] serve as dummy implemen-
tations of an API, enabling programmers to write and test
their code as if all the necessary dependencies are in place.
Once the missing parts become available, virtually no code
change is necessary to adapt to the real, instead of the mock,
objects.

Mock objects in the form they exist today are undoubt-
edly useful as they enable unit tests to be performed despite
missing dependencies, with very little effort. Yet they are
severely limited in the benefits they can provide to program-
mers. Typically a mock object is just a stub, with little if any
of the actual functionality of the code it is mocking. There-
fore, mocking libraries (e.g. Mockrunner [5], Mockito [6])
require clients to explicitly indicate the results they expect
from the mock object and to only indirectly test the correct-
ness of their code through implementation-specific checks.
As a result, tests are fragile, error-prone, and difficult to
understand or reuse.

1.1 Motivating Example
As a small example, Fig. 1 shows how Mockito, a mocking

library from Google, can be used to test an implementation

1 class MySet implements Set {
2 List elems;
3 void add(Object o) {
4 if (!elems.contains(o))
5 elems.add(o);
6 }
7 void testAdd () {
8 List mockList = mock(List.class);
9 MySet s = new MySet(mockList);

10 when(mockList.contains (0))
11 .thenReturn(false);
12 s.add (0);
13 verify(mockList , times (1)). add (0);
14 when(mockList.contains (0))
15 .thenReturn(true);
16 s.add (0);
17 // shouldn’t add duplicates:
18 verify(mockList , times (1)). add (0);
19 }
20 }

Figure 1: Using the Mockito mocking library to test
an implementation of sets against a mock list object

of Set interface that is internally built using a list object
that, hypothetically, is not yet available. The programmer’s
goal is to test that the add method for MySet avoids adding
duplicate elements. Unfortunately, this seemingly simple
task is not particularly straightforward. The call to mock on
line 8 creates a stub object that meets the List interface. By
default this stub does not faithfully implement the intended
behavior of List’s contains and add methods. For example,
the stub has no way of knowing what boolean value to re-
turn upon a call to contains, so the programmer is required
to explicitly provide this information. Therefore, on line 10
the programmer indicates that contains should return false

when given the argument value 0. Worse, she has to update
this information on line 14, since 0 has now been (conceptu-
ally at least) added to the list. Similarly, because the mock
list’s add method does not actually add the given element
to the list, the programmer cannot directly check that du-
plicates are handled properly. Instead, she uses Mockito’s
verify method to check the number of times that the mock
object’s add method is invoked (lines 13 and 18). These
checks ensure that the mock object’s add method is not in-
voked on the second invocation of s.add(0), which implies
that the duplicate element is properly ignored.

The limitations of mock objects are clear on this simple
example, and these problems are exacerbated as the objects
being mocked and the code being tested become more com-
plex. To overcome these limitations, our goal is to enable
programmers to easily build mock objects that directly re-
flect important parts of the functionality that they mock.
Another goal is to have mocks that are less coupled with
any specific implementation of both the code under test and
the code being mocked, which makes the tests more robust.
Of course, any practical approach should require much less
effort than it would take to actually implement the object
being mocked, or else the benefits of mocking are lost.

1.2 Declarative Mocking
We observe that recent progress on executable specifica-

tions and declarative execution can naturally support our
goals: programmers can write specifications in a high-level
logical language for the methods in the API being mocked,

and a constraint solver dynamically executes these specifi-
cations when the methods are invoked. Specifications are
often simpler than imperative code because they can di-
rectly express what behavior is desired without specifying
how that behavior is achieved. Specifications also naturally
support nondeterminism, which is useful both for modeling
actual nondeterminism in the mocked object (e.g., the order
in which messages will be received over the network) and
for enabling partial specifications, with the nondeterminism
used to represent “don’t care” situations. We call the re-
sulting approach declarative mocking. Note that the effort
in writing specifications can be amortized over their many
benefits: while stubs like those in Fig. 1 must be carefully
tailored to each individual test, specifications can define the
behavior of a mocked API once and for all. Furthermore, the
same specifications can be employed for static verification
and/or dynamic contract checking of the “real” component
being mocked.

In addition to using specifications to mock functionality,
we observe that the same technology naturally supports the
mocking of data, which provides additional value in the con-
text of program testing. Unit tests commonly require a pre-
condition to be established, i.e. the inputs and state of a
program need to be initialized to satisfy some relevant prop-
erties, before the test can be executed. Executable specifi-
cations remove the need for imperative code to perform this
initialization, instead allowing the tester to directly specify
the intended precondition, reducing tester effort and increas-
ing understandability.

Several recent works have used constraint solving to gen-
erate mock objects as part of an approach to automated
test-case generation [7, 8, 9, 10, 11]. Declarative mocking
uses similar technology but for a different purpose. Whereas
the prior works employ a constraint solver offline in order to
generate high-coverage tests, declarative mocking employs a
constraint solver online to dynamically substitute for miss-
ing code or data. Therefore, declarative mocking still re-
quires users to provide their own tests. On the other hand,
declarative mocks are fully executable with arbitrary inputs,
independent of any test cases. For example, these mocks can
be used to perform system-level testing without having to
generate explicit system-level tests, and they allow users to
easily interact with a running system, where mocks fill in
for any missing functionality, to manually test features of
interest.

1.3 Implementation and Evaluation
We have implemented declarative mocking for Java on top

of an existing Java extension supporting executable specifi-
cations, called PBnJ [12]. The PBnJ compiler and all mock-
ing examples and benchmarks in this paper are available at
http://www.hesam.us/mockspecs.

We evaluate declarative mocking with PBnJ in two ways.
First, we performed an exploratory study on four open-
source applications that we considered good targets for declar-
ative mocking. These applications respectively interact with
a web server, a database, a server that implements a file-
transfer protocol, and a data center providing computational
resources in the cloud. We used this study to classify various
scenarios under which declarative mocking can potentially
provide value over traditional mocks, and we also identify
potential limitations of the approach.

http://www.hesam.us/mockspecs

Second, we ported six existing applications from Google
Code that use Mockito to instead use PBnJ and we an-
alyze the results using the classification derived from our
exploratory study. Concretely, this second study is designed
to answer the following two research questions:

RQ1 What is the overhead for a developer to use declarative
mocks, when used to replicate the exact behavior of
traditional mocking approaches today?

RQ2 How often and under what scenarios do declarative
mocks offer advantages beyond the traditional approaches,
with a justifiable amount of additional effort?

We investigated RQ1 by first porting each existing Mockito-
based unit test to use PBnJ in such a way that the exact
behavior is preserved. This experiment is something of a
“worst case” for PBnJ, since specifications are used in a
very limited and unnatural manner. We observed that on
average twice as much developer effort (estimated by the
number of lines of code) is needed to employ specifications
instead of stubs. Further, there was an average added delay
of one second per test in execution times.

To investigate RQ2, we revisited the same benchmarks
to see which unit tests can be enhanced, with reasonable
additional effort, by taking advantage of the benefits of ex-
ecutable specifications that were identified during the ex-
ploratory study. The enhancement is measured in terms of
increased test coverage, code reuse, and/or strength of prop-
erties tested. According to this metric, 54% of the unit tests
in the applications can be enhanced by employing executable
specifications. For the rest of the tests, stubs are sufficient
and any additional effort to enhance the mocks with specifi-
cations was not justified. Finally, since the specifications for
a mocked API are generally reusable across an entire test
suite, we observed that the ported tests have on average the
same number of lines of code as the original unit tests.

The paper is organized as follows. After providing back-
ground on executable specifications (Sec. 2), we introduce
the idea of declarative mocking (Sec. 3). Secs. 4 and 5 re-
spectively present our exploratory study and our experiment
with Mockito-based tests from Google Code. Finally we dis-
cuss related work and conclude.

2. EXECUTABLE SPECIFICATIONS
Specifications have long been proposed as a means to ex-

press the intended semantics of a software component. Re-
cent specification languages include JML [13] for Java and
Spec# [14] for C#, which support method pre- and post-
conditions as well as object invariants. These specifications
are typically used during development to dynamically (by
contract checking [15]) or statically (using program verifica-
tion techniques [16]) check that the implementation behaves
as intended.

More recently, it has been demonstrated how the latest
constraint solving technologies can be utilized to declara-
tively execute specifications at run time as an alternative
to imperative code. The basic idea is to execute code nor-
mally until reaching a specification that needs to be exe-
cuted, which is represented as a predicate in some logic.
At that point, a constraint solver is queried to find a pro-
gram state that satisfies the specification, the program state
is updated appropriately, and execution continues. This
approach naturally allows executable specifications to be

class MockList implements List {
Object [] elems , int size;
spec int size() { return size; }
pure boolean contains(Object o)

ensures result <==>
some int i : 0 .. size - 1 |

elems[i]. equals(o);
void add(Object o)

modifies fields
MockList:elems , MockList:size

ensures size == old(size) + 1
&& elems[old(size)] == o
&& all int i : 0 .. old(size) - 1 |

elems[i] == old(elems[i]);
}

Figure 2: A runnable mock List class in PBnJ

mixed with imperative code in mainstream languages in
a fine-grained manner. For example, the PBnJ [12] and
Squander [17] tools extend the syntax of Java with first-
order relational logic specifications and use a propositional
satisfiability (SAT) based relational solver called Kodkod [18]
to execute specifications, while Kaplan [19] extends the Scala
language with executable specifications that are represented
in a subset of Scala itself and executed with a satisfiability
modulo theories (SMT) solver. In this paper we illustrate
declarative mocking with PBnJ, but the other systems de-
scribed above could be used equally well.

As an example, the MockList class shown in Fig. 2 uses
PBnJ specifications [12] to describe the intended semantics
of its contains and add methods. As is common, postcondi-
tions are indicated with an ensures clause, and the keyword
result represents the value returned by the method. The
specification language supports a variety of expressive fea-
tures, including integer and boolean primitives and associ-
ated operations; universal and existential quantification over
arrays and other collections, via the all and some keywords;
as well as set comprehensions. spec methods denote user-
defined functions that may be invoked within specifications.
Finally, the old() function is used to refer to the value of a
variable or field on entry to the method.

The MockList specifications naturally capture the expected
behavior of the two list operations. Furthermore, with PBnJ
the result is a fully executable list implementation. For ex-
ample, when the add method is invoked, PBnJ will encode
the current program state (i.e., all in-scope program vari-
ables and fields, along with the objects reachable from them)
in the language of the Kodkod constraint solver. PBnJ then
asks Kodkod for a model of the declared postcondition —
values for the various program variables and fields that make
the postcondition valid. This model is used to update the
actual dynamic state of the Java program (see Fig. 3).

To ensure a finite search space, Kodkod requires that each
variable have a bounded number of possible values. The
search space for a variable with an object type is the set
of existing instances of that type in the current program
state. However, the user may override this default with an
adds clause stating the number of additional objects of a
given type that can be instantiated, in order to satisfy the
postcondition of the method.

All variables and fields mentioned in a specification are
considered modifiable by default. However, PBnJ syntax
allows limiting this space to serve two purposes. First, it

Figure 3: Declarative execution in PBnJ

is a convenient way to express frame conditions, which en-
sure that certain variables remain unchanged. For instance,
the add method in our example may only modify the two
fields declared in the MockList class, which is expressed us-
ing the modifies fields annotation. contains, however, may
not have any side effects and gets a pure modifier, the equiv-
alent of empty modifies clause. Second, reducing the search
space can dramatically reduce the constraint solving time.
Further details on PBnJ can be found in prior work [12].

3. DECLARATIVE MOCKING
Traditional mocking paradigms are inexpressive and do

not allow reuse. Declarative mocking through executable
specifications allows the developer to avoid having to spec-
ify the concrete outcome of every interaction with a mock
object, and instead directly and declaratively express the
mock object’s important behaviors. The use of executable
specifications additionally enables a new form of mocking, in
which the data and/or environment needed for a test case
is produced via specifications. In this section we describe
declarative mocking of both functionality and data and also
introduce extensions to PBnJ to support these tasks.

3.1 Mocking Functionality
Fig. 4 illustrates how executable specifications resolve the

problems for mocking that we saw in Fig. 1. Because an
instance of MockList from Fig. 2 already “knows” the in-
tended behavior of a list’s operations, there is no need for
each individual test case to specify this information. Simi-
larly, test cases can use ordinary asserts to directly ensure
properties of interest, rather than the indirect and fragile
approach to checking behaviors in terms of method invo-
cation counts. We classify and quantify the benefits and
limitations of declarative mocking versus stubs in our ex-
perimental studies of Secs. 4 and 5.

3.2 Mocking Data and Environment
Developers commonly want to test a feature in their ap-

plication under various scenarios. For each scenario, they
write initialization code to build up the state to the appro-
priate condition and then perform the tests. We observe that

class MySet implements Set {
List elems;
int size() { return elems.size (); }
void add(Object o) {

if (!elems.contains(o))
elems.add(o);

}
void testAdd () {

List mockList = new MockList ();
MySet s = new MySet(mockList);
s.add (0);
s.add (0);
// shouldn’t add duplicates:
assert (s.size() == 1);

}
}

Figure 4: Testing a Set implementation using the
PBnJ MockList class from Fig. 2

class MySet {
List elems;
void test1() {

assume elems.size() > 0;
// now run the test ...

}
void test2() {

assume elems.contains(null);
// now run the test ...

}
}

Figure 5: Mocking the environment for test initial-
ization

executable specifications can be naturally used to automati-
cally modify program state to satisfy specified initialization
conditions, relieving the tester of this burden. We call this
approach data mocking, which is useful even for tests that
do not rely on our declarative mock objects.

3.2.1 The assume Statement
To enable data mocking in PBnJ, we introduce a new

statement of the form assume <pred>, where pred is a predi-
cate on the current program state. When such a statement is
encountered, PBnJ uses Kodkod to identify a program state
satisfying pred, updates the program state, and continues
execution. In the context of testing, the assume statement
is useful both to synthesize the inputs to use in the test as
well as to properly set the state of the mocked objects. We
refer to the latter capability as environment mocking.

Consider again the MySet class with a mocked List ob-
ject. In Fig. 5 we use environment mocking to easily set
up two different test scenarios of interest: when the mocked
list is non-empty and when it contains the null value as an
element. When each test is run, PBnJ will nondeterminis-
tically find a state of the mocked object satisfying the given
initialization condition.

3.2.2 The unique Modifier
In order to allow the developer to take full advantage of

nondeterministic specifications and achieve higher coverage,
we introduce an annotation for specifications called unique.
This annotation can appear as a modifier on a method as
well as on an assume statement. Consequently, every invoca-
tion of the associated specification on the same inputs will

choose a result not previously chosen, unless all possible so-
lutions have already been produced. For example, when the
postcondition result * result == 9 is invoked for the first
time, either solution result = 3 or result = -3 may be pro-
duced. Now, should the unique modifier be present, a second
invocation (within the same process) will only return the so-
lution not previously chosen. In this way, a tester can cycle
through all possible scenarios satisfying a given initialization
condition. We implemented this feature by leveraging the
Kodkod solver’s ability to (surprisingly efficiently) solve for
all possible solutions within a given set of bounds.

4. EXPLORATORY STUDY
In this section we report on an exploratory study we per-

formed in order to gain insights into the benefits and limita-
tions of declarative mocking. We used PBnJ specifications
to perform mocking on four open-source applications. This
process allowed us to freely experiment without being bound
to how mock objects are used today. Below we present the
experiments and classify the advantages and disadvantages
of declarative mocking that we discovered.

4.1 Applications

4.1.1 JStock—Mocking Webserver Data
JStock [20] is an open-source Java stock watchlist GUI ap-

plication, which frequently queries a web page to display live
quotes in a table. We augmented JStock’s source code with
executable specifications to mock data that is received from
the webserver, allowing us to test the application without
accessing the network or requiring any web service libraries.

4.1.2 JDBC—Mocking Database Behavior and Data
The Java Database Connectivity (JDBC) API [21] allows

Java applications to interact with database management sys-
tems using simple method calls with strings of SQL state-
ments as their parameters. We used PBnJ to create a func-
tional, in-memory mock database meeting this API.

4.1.3 TFTP—Mocking Errors and Network Nonde-
terminism in a Client-Server Protocol

TFTP [22] is a simple protocol for transferring files be-
tween a client and a server. We created a mock server object
in order to test an implementation of the client. Writing
an imperative mock server that responds appropriately to
client messages is relatively straightforward. However, by
running the mock server locally, we lose the nondeterminis-
tic behavior that may occur due to dropped or misordered
packets over the network. Our goal was to explore the use
of specifications to express this network nondeterminism in
a declarative manner.

4.1.4 Hadoop—Mocking Cloud Behavior and Envi-
ronment

Hadoop [23] is an open-source framework for processing
MapReduce jobs in the cloud. Testing a MapReduce ap-
plication is a challenging task. Using cloud resources is
often not a practical option for development and testing.
Moreover, the performance of a MapReduce job is greatly
influenced by numerous execution factors. These include
the resources dedicated to the job, the workload, as well as
scheduling policies.

class Table ensures uniqueRows () {
String primaryKey;
List <String > columns , List <Tuple > rows;
spec boolean uniqueRows () {

int primaryIdx =
columns.indexOf(primaryKey);

return
all int i : 0 .. rows.size() - 1 |

all int j : 0 .. rows.size() - 1 |
(i != j ==>

rows.get(i).get(primaryIdx) !=
rows.get(j).get(primaryIdx));

}
}
class Tuple extends ArrayList <Literal > { }

Figure 6: Partial invariants of a JDBC Table object

MapReduce simulators have been built (e.g. [24]) to help
developers simulate their applications locally. To utilize the
simulators, the users are required to provide cluster and
workload trace information from real previous executions
on the cloud. This data is not always available and tedious
to produce synthetically [25]. Our first goal was to use data
mocking to produce realistic trace information for input to
such simulators. Secondly, we employed specifications to
mock Hadoop’s standard FIFO and fair (HFS) schedulers
(see [26]), which these simulators rely upon. Our goal here
was to experiment with the usage of specifications for rapid
prototyping and design experimentation.

4.2 Advantages and Disadvantages
We now present the results of our exploratory study in

terms of a classification of the advantages and disadvantages
of declarative mocking. On each point, we compare our pro-
posed approach with both traditional stub-based mocking
and mocking by simply writing imperative code.

4.2.1 Advantages
Data Integrity: Objects often come with implicit integrity
constraints that should be always satisfied. One of the bene-
fits of declarative mocking is that these integrity constraints
can be stated once and for all (as object invariants), and
the runtime guarantees that any mocked behavior or data
always conforms to these constraints. On the other hand,
if done manually, it is easy for the tester to accidentally set
up a program state that does not in fact conform to the
necessary integrity constraints.

Example1. The in-memory JDBC-style database mock lever-
ages the ability to express integrity constraints. Fig. 6 shows
the representation of a database Table in the mock Jdbc ob-
jects, with Literal representing literal values storable in a
cell. Each Table object must satisfy the uniqueRows() speci-
fication to enforce the exclusion of rows with duplicate pri-
mary keys. Consequently, any mocked Jdbc database or op-
eration automatically ensures this property is preserved.

Declarative Expression: The expressiveness of specifica-
tions depends upon the flexibility of the employed solver.
In performing these experiments, we found PBnJ’s speci-
fication syntax to be adequate for concise and declarative
expression of user intentions.

class DatabaseGUI {
Jdbc jdbc , ResultSet results;
void buttonTest1 () {

assume databaseInit ()
&& results.size() == 0;

// now test button behavior
}
void buttonTest2 () {

assume databaseInit ()
&& results.size() == 2;

// now test button behavior
}
spec boolean databaseInit () {

String dbID = "shop";
String tableID = "inventory";
BExpr where =

new CmpExpr(EQ, "price", 0);
Database db = jdbc.databases.get(dbId);
Table table = db.tables.get(tableId);
return jdbc != null

&& jdbc.databases.containsKey(dbId)
&& db.tables.containsKey(tableId)
&& table.columns.contains("price")
&& table.select(where , results);

}
}

Figure 7: Declaratively initializing tests

Example2. Testing various functions of a JDBC GUI client
requires a database initialized in a particular way. A tester
would be interested in the behavior of a GUI under various
database conditions, e.g.:

“Does button1 work properly assuming we are
connected to a database named shop, which has a
table named inventory, for which when I run the
query select * from inventory where price = 0, I get
no results? What about when I get two results?”

In Fig. 7 we show a PBnJ translation of the above scenario.
The select method is a spec method that selects database
rows based on a given query. Declarative specifications nat-
urally and directly capture the programmer’s intent.

Underspecification: Declarative mocking is useful when
the programmer does not want to implement all aspects
of the functionality being mocked. Specifications naturally
support this through underspecification. For example, if the
only relevant fact about a method is that its return value
is always a positive integer, this can be stated directly as a
specification, and PBnJ will nondeterministically choose a
value to return at run time.

Example3. To achieve the sample database initialization
requirements given above without declarative mocks, the
tester must manually bring the state of the mock database
to the desired condition. This process involves choosing con-
crete values for all aspects of the database state, for example
selecting exactly which two results should be returned to the
given test query. In contrast, with specifications the tester
does not have to specify any details about the database state
other than the high-level requirements described earlier.

Nondeterminism: Similarly, nondeterministic behavior can
be expressed more naturally in specifications than in manual
code or stub.

spec boolean
isWellFormedErrorInducingMsg(Msg m) {
return !isNonErrorInducingMsg(m)

&& isWellFormedMsg(m);
}
spec boolean

isNonErrorInducingMsg(Msg m) { ... }
spec boolean isWellFormedMsg(Msg m) { ... }

Figure 8: Composing specs in TFTP

Example4. In TFTP, to test that the client side properly
handles all possible scenarios of received messages, we wrote
a declarative mock server and specified conditions for var-
ious types of messages it may send out to the client. The
nondeterminism in the messages sent by the mock server,
due to network conditions and/or server errors, was natu-
rally captured as a logical disjunction of conditions, each
specifying one legal type of message to send.

Compositionality: Logical specifications compose effort-
lessly, which allows relatively complex requirements to be
expressed by composition of several simpler conditions. On
the other hand, mocks implemented as imperative code do
not easily compose. This was demonstrated by the TFTP
application.

Example5. One class of messages that the TFTP server
can send are well-formed-error-inducing (WFEI) messages.
These messages could be sent due to a buggy server imple-
mentation and are used to test the error-handling behavior
in the client. As seen in Fig. 8, we were able to generate
messages that are WFEI simply by composing predicates for
well-formed and non-error-inducing messages, whose specifi-
cations are relatively straightforward and were gleaned from
the TFTP specification document [22].

We cannot in general compose two different stubs in order
to produce a stub that has the desired characteristics. Nor
does there appear to be a natural way to employ composition
in this way using imperative code. For example, both the
well-formed and non-error-inducing conditions impose con-
straints on the block number of a given message. Therefore,
the programmer must manually deduce the range of block
numbers that satisfies all constraints and then implement a
method that produces block numbers in that range.

Reconfigurability of Data: Software testing often in-
volves testing under numerous representative scenarios. One
scenario may be different from another in a conceptually
simple way, easily expressed by tweaking or composing logi-
cal conditions. Yet there may not be a simple way to tweak
a stub representing one condition to obtain a stub repre-
senting the other. Similarly, the imperative code to produce
each one may be very different.

Example6. To enable mocking of job trace and cluster data
for the Hadoop application, we specified the general hierar-
chy of a data center cluster as well as the structure of a
MapReduce job. Once the class hierarchies, integrity con-
straints, and specification methods were declared, we could
readily produce any number of very different workload sce-
narios for units test with just a tweak of a few lines of spec-

ifications. When testing our Hadoop mock schedulers this
proved very useful, as it enabled us to quickly produce a
range of scenarios to run on.

Extensibility and Reusability: Declarative mocking is
useful when the mock object is itself subject to frequent
modifications or experimentation. For example, with spec-
ifications the programmer can naturally start with a bare-
bones mock whose specifications are very weak and then
incrementally strengthen the specifications based on the re-
quirements of the client code under test. This kind of evo-
lutionary process is much less natural with stubs or imper-
ative code, since conceptually small updates to the mock’s
intended behavior can easily translate into tedious and siz-
able modifications to examples or an implementation.

Example7. We used the extensibility of specifications to
our advantage in implementing the Hadoop schedulers declar-
atively. We first wrote the general task assignment policies
(e.g. no reduce jobs can be assigned unless all map jobs are
complete) in the superclass’s method called
MockScheduler.assignTasksSpec(). Moving to a stronger pol-
icy of FIFO, we added FIFO-specific policies for the subclass
MockScheduler_FIFO and used the conjunction
super.assignTasksSpec() && assignTasksSpec_FIFO() as the
functional mock of the FIFO scheduler.

4.2.2 Disadvantages of Specifications in General

Effort vs. Stubs: Software engineers find stub-based mock
objects appealing precisely because of the very low overhead
to employ them. Clearly, using logic to describe the general
functionality of mocks can require substantially more devel-
oper effort.

Effort vs. Imperative Code: For small and/or simple
mocks, many of the benefits of using specifications can be
achieved using ordinary imperative Java code instead. For
example, after writing the in-memory JDBC mock both en-
tirely in specs and entirely in code, we realized that the
SQL operations are not complex enough to justify the use
of executable specifications for the purpose of mocking the
functionality of a database (while they remain very useful
for mocking the data in a database).

On the flip side, some simple algorithms like sorting on
arrays and insertion into red-black trees can be succinctly
specified but can be much more onerous to implement due to
low-level details and subtle corner cases [12]. Even our sim-
ple MockList example has a subtle issue when implemented
imperatively: when adding an element to the list, regular
Java code must check that the elems array has space for the
new element and must allocate a bigger array if not. In
contrast, the specification handles this issue implicitly.

Specifications Are Error-Prone Too: Just as in impera-
tive code, logical specifications can be error-prone and hard
to debug. Stubs are typically simple input-output pairs and
so more straightforward to implement.

Efficiency and Scalability: In general constraint solving
is severely limited in its efficiency and scalability versus im-
perative code. However, state-of-art solvers are constantly
improving, and PBnJ’s frame annotations help a lot in mak-
ing the approach practical. In our experiments, we observed

a slowdown of seconds and in a few times minutes per test.
Nevertheless, during development and testing, developers
may well be willing to trade off some performance for the
software engineering benefits of declarative mocking illus-
trated here.

4.2.3 Limitations Specific to PBnJ

We encountered a few problems while performing these
experiments that are not inherent to executable specifica-
tions, but are rather a result of limitations in the current
implementation of the PBnJ tool.

We employ Kodkod, a bounded solver that directly en-
codes constraints into SAT, and which supports integers as
the only primitive type. Constraints involving other kinds
of primitive data such as reals, floats, and strings are there-
fore not directly supported. In our current implementation
of PBnJ we only support equality constraints on primitives
other than integers. Moreover, SAT-based constraint solving
can become prohibitively slow when too many integer vari-
ables are involved due to the large search space. Therefore
we ran the constraints assuming only 8-bit integers. Both of
the above limitations can be partly avoided by employing a
satisfiability modulo theories (SMT) solver such as Z3 [27],
which employs specialized constraint solvers for arithmetic
and other logical theories. Finally, PBnJ currently does not
support constraints over data of a nested generic type (e.g.
List<List<Integer>>), and some refactoring of code was nec-
essary to work around this limitation.

5. EVALUATION
Based on our exploratory study discussed in the previous

section, it is clear that there are real software engineering
benefits to using declarative specifications for mocking, but
there are also important limitations and costs to consider.
To investigate the research questions posed in Sec. 1, we
ported the unit tests of six existing applications from Mock-
ito to PBnJ.

5.1 Selection Criteria
We searched Google’s open-source code repository code.

google.com for Java applications that employ Google’s Mock-
ito library as part of their unit tests. We selected the first 6
applications in the search results whose purpose was fairly
clear to us based on the descriptions, and for which we were
able to gain a fair amount of understanding about the tests
and the mocked components in a relatively short amount of
time. We only examined unit tests that employed Mockito.
We excluded tests that rely on the mock object throwing an
exception, since our tool currently lacks support for speci-
fications about exceptions. This limitation excluded 5% of
the tests that use Mockito.

5.2 Strategy
We applied a two-phase evaluation strategy on each bench-

mark, which respectively address our two research questions
RQ1 and RQ2 posed in the introduction:

Phase A: To learn about the overhead of using specifi-
cations and constraint solving, we first replicated each unit
test by replacing existing mocks with declarative mocks that
behave exactly as the developer’s Mockito stubs. We wrote
a separate mock class with associated PBnJ specifications
mimicking the stubs for each individual test.

code.google.com
code.google.com

For example, if the original stub appeared as

when(mockList.contains(0)).thenReturn(false)

then we would create a mock List class with the method

boolean contains(int x) ensures x == 0 ==> !result;

We compared the two versions in terms of programmer ef-
fort, expressiveness, and running time for each test.

Phase B: In the second phase, we evaluate whether access
to declarative mocking could have enhanced the unit tests
in terms of strength of properties tested, test coverage, and
reusability, with a justifiable amount of additional effort. We
consider both mocked functionality and mocked data for test
initialization. For instance, in our List example above we
would generalize the specification as follows:

contains(int x) ensures result <==>

some int i : 0 .. size - 1 | elems[i] == x;

Unlike the first phase, here we generalized and reused a sin-
gle mock class and its associated PBnJ specifications across
multiple tests, as this is the natural style to use with declar-
ative mocking.

5.3 Benchmarks
We examined a total of 114 unit tests among 6 bench-

marks, briefly described below.
j2bugzilla is an API for interacting with a Bugzilla bug
repository within Java. Unit tests mock the BugzillaCon-

nector class, which uses an Apache XML RPC library to
access a given Bugzilla repository.
jscep is the implementation of the Simple Certificate En-
rollment Protocol (SCEP) in Java. To avoid having to test
with the real objects, the unit tests mock both the certifi-
cate (an X.509 certificate in the java.security package), as
well as the CertificateCertifier, the interface for verifying
the identity of a given certificate.
tjays1-project1 is a personal code repository with a collec-
tion of small applications, which all employ Mockito stubs
in their unit tests.
gcm-server is the server side implementation of cloud mes-
saging service for Android. Google developers use a mock
of the Sender class, responsible for sending messages over an
HTTP connection, to test any number of possible scenarios.
shivaminesweeper is a servlet-based Minesweeper game
running in the browser. Unit tests mock the HTTP connec-
tion and stub the requested parameters to verify the func-
tionality of the game implementation based on user events.
birthdefectstracker is a web-based application to query
and manipulate a database of medical records. The most
notable use of mock objects is that of various Data Access
Objects (DAOs). Unit tests are generally used to test proper
behavior of DAO controllers, for example that an error is sig-
naled when a username is entered that already exists in the
database.

5.4 Phase A Results
In phase A all unit tests were successfully refactored to

replace stubs with specs that retain their exact behavior.
Table 1 summarizes the results for both phases of the evalu-
ation1. As a rough measure of developer “effort” required to
replace stubs with specifications, we compared the number

1Solving on a Core i7-3930K, 3.20GHz, with 8-bit integers.

of lines between the stub and spec versions. The third col-
umn of Table 1 shows that on average there was a 2:1 lines-
of-code ratio between specs and stubs, respectively. The
average slowdown due to constraint solving was one second
per test. Based on this data, there is considerable effort
overhead for the tester to employ specifications merely as
stubs, which is to be expected since input-output stubs can
make very little use of the benefits of specifications.

The functionality of Mockito’s verify() (which tracks in-
vocation counts for a stubbed method) cannot be directly
replicated using specifications. We replicated this task indi-
rectly by declaring auxiliary counter fields and adding ad-
ditional assertions in the postconditions to increment these
counters on each invocation. In many cases there was a
more direct property to be checked which would obviate the
need for simulating verify(); phase B below explores that
possibility.

5.5 Phase B Results
In phase B we revisited each test to examine whether the

specifications from the previous phase could be generalized
to take advantage of the benefits of declarative mocking il-
lustrated in Sec. 4. Below we sample some of the positive
and negative scenarios that we encountered.

5.5.1 When Specifications Were Useful

(D) Data Mocking, Data Integrity: In shivaminesweeper
there are many implicit relationships among objects repre-
senting various aspects of the game, such as the dimensions
of the board, the mine count for each cell on the board, etc.
Many tests set up the game board manually by constructing
a specific game state. We instead specified the relationships
between various objects using object invariants. This sim-
plified the task of test initialization. For example, once the
dimensions for the board are provided, the invariants au-
tomatically determine the appropriate number of mines to
include and place them on the board nondeterministically.
This use of invariants prevents the creation of inconsistent
states, which are easy to accidentally introduce when initial-
izing state manually.

(R) Reusability: In birthdefectstracker we removed the ex-
isting stubs and reused the database specifications from our
JDBC mock from the exploratory study to generalize each
test. We used data mocking to initialize various snapshots of
each database declaratively, and recycled the initialization
conditions from one test to another to reduce effort.

(U) Underspecification: One of the applications in tjays1-
project1 is an implementation of an elevator unit, where tests
verify that the implementation chooses the right floor to stop
at next. An object keeping a priority set of floors that have
requested service is mocked. Instead of hardcoding a set of
floors as done in the original stubs, we request an underspec-
ified set of floors, and employ the unique modifier to test a
variety of context within a single test, with only minimal
modifications to the original unit tests. Here, specifications
increase the coverage of each test while requiring the same
amount of developer effort.

(N) Nondeterminism: Several tests in gcm-server check
that the send method properly retries message sends when-

Sender sender = Mock(Sender.class);
Result message = new Result ();
doReturn(null) // fails 1st time

.doReturn(null) // fails 2nd time
.doReturn(result) // succeeds 3rd time

.when(sender).send(message , "1");

Figure 9: Use of stubs in gcm for simulating a sce-
nario that includes failures and success

class MockSender extends Sender {
spec int sendCount;
Result send(Message msg , String id)

ensures sendCount == old(sendCount) + 1
// up to 4 times
// ok/fail nondeterministic:
&& (result != null

|| old(sendCount) < 5);
}

Figure 10: Specifications generalize Fig. 9 scenario.

ever they get dropped. Fig. 9 shows how Google developers
use Mockito’s cascaded stub feature to test particular sce-
narios involving dropped messages. Specifications express
this nondeterminism naturally, as a disjunction of possible
outcomes, as illustrated in Fig. 10. We added the unique

modifier to generalize tests such as this to cover any num-
ber of possible outcomes, making several other existing tests
redundant. Writing these specs does not require much more
effort than the stubs in Fig. 9.

5.5.2 When Specifications Were Not Useful

When Stub Is Irrelevant to the Test: In the jscep
benchmark, as shown by the example in Fig. 11, unit tests
use stubs to check that the certificate certifier is properly in-
voked by the client code under various circumstances. This
represents a case where specifications do not enhance this
test in any way, as there is no relation between the property
being tested (the certifier has been properly invoked) and
the logic of the stubbed components (the certifier’s behav-
ior).

When Mocking Functionality Is Simple with Code:
As we discovered in the exploratory study (in mocking SQL
operations) sometimes mocking an object’s behavior is straight-
forward using imperative code and the overheads of using
specifications and constraint solving are not justifiable.

void testHandlerForCertificate () {
certifier = mock(Certifier.class);
cert = mock(X509Certificate.class);
when(certifier.certify(cert))

.thenReturn(true);
// perform handler test here ...
// verify certifier ’s certify method
// was invoked:
verify(certifier). certify(cert);

}

Figure 11: jscep example where specs not useful

5.5.3 Results
The last 7 columns in Table 1 report the result of the

second phase of the evaluation. We state the percentage of
examined unit tests for each benchmark that were enhanced
by declarative data mocking and data integrity (D), reuse
and reconfiguration (R), and nondeterminism and under-
specification (NU). Clearly, many tests belong to multiple
categories, and some of properties we mentioned in Sec. 4
were left out due to being difficult to accurately quantify.
We dub tests that exhibit at least one of these properties as
“enhanced.” The next column indicates that 54% of all unit
tests were able to be enhanced in this way.

In performing this experiment and studying the results,
we observed a general pattern. Among unit tests where
there was a strong relationship between the logic of the
unit test and the stubbed component, declarative mocking
of functionality was typically beneficial. On the other hand,
when mocks were simply there to enable running of the tests,
with no direct relation to the properties being tested, stubs
were sufficient and specifications were not worth the effort.
Declarative data mocking, on the other hand, was typically
beneficial any time there existed complex test initialization
data.

The third-to-last column compares the lines of code as a
rough measure of developer “effort,” among those tests that
benefited from declarative mocking. Because the specifica-
tions were generally reusable across the tests for a given
application, this ratio dropped to 1:1 on average. Thus em-
ploying specifications can produce their many benefits for
the purpose of mocking, while requiring comparable amount
of developer efforts over a test suite when compared to tra-
ditional approaches.

The last two columns report on constraint solving times
by Kodkod. The average solving time in Phase B was 34
seconds per test. As we mentioned, this solver works by
direct translation to SAT and constraints involving a lot of
integer arithmetic can take a long time to solve. This was
the case in both shivaminesweeper and birthdefectstracker,
where specifications involved arithmetic constraints over the
elements of a multidimensional array. The current PBnJ
tool is not optimized for these situations.

6. RELATED WORK
Declarative mocking is related to several strands of prior

research.

6.1 Mock Objects
Several libraries are designed to allow testers to produce

simple mock objects, including Mockito [6], Mockrunner [5],
and Microsoft Moles [28]. These frameworks make tradi-
tional stub-based mock objects easier to create, while our
work focuses on making mock objects more expressive and
declarative. Ostermann incorporates nondeterministic choice
to make mock objects more expressive [29]; declarative mock-
ing naturally supports nondeterminism as well as additional
expressiveness.

Saff et al. [30] propose an approach to automatically create
mock objects for the purpose of test factoring by capturing
the interactions between a component and its environment
on a set of system-wide tests. This approach requires that
the full system be available initially. Similarly, Qi et al.’s
method [31] creates environment models based on execu-
tion traces, so it also requires a fully executable version of

Table 1: Benchmark data
Phase A Phase B

#Tests Spec/Stub Avg Worst % % % %Tests Spec/Stub Avg Worst
Application with stubs LoC ratio time time (D) (R) (NU) enhanced LoC ratio time time
j2bugzilla 13 1.4 4 sec. 10 sec. 77 85 69 85 0.4 12 sec. 95 sec.

jscep 4 2.6 0 0 0 0 0 0 – – –
tjays1-project1 18 1.8 1 2 44 44 39 44 0.8 1 2

gcm-server 23 0.9 1 2 22 30 30 30 1.0 2 3
shivaminesweeper 15 1.8 1 2 93 93 93 93 0.7 52 64
birthdefectstracker 41 2.8 0 1 73 73 66 73 1.9 104 335

the program including of the mocked environment. Our ap-
proach does not have this limitation and allows more control
over what properties of the environment to mock, but it re-
quires explicit specifications.

In prorogued programming [32], the system interactively
asks the user to supply an appropriate return value upon
a call to the method. The supplied values are recorded for
later use, which has the effect of incrementally building up
an appropriate mock for the method.

Henkel et al.’s approach [33] is conceptually similar to ours
but uses term rewriting on specifications rather than con-
straint solving for producing mocks. Their approach relies
on heuristics to guide the rewriting, which can miss solu-
tions and/or lead to infinite search, while our specifications
are more general, and soundness and completeness are guar-
anteed, up to the search bounds. Wilmore [34] proposes an
automatic database state preparation approach for test ini-
tialization of database applications via intensional specifica-
tions as constrained queries. This work can be thought of as
an instance of declarative mocking of data, and our approach
can handle it, as evidenced by our JDBC and MapReduce
examples.

As mentioned in Sec. 1, declarative mocking uses similar
technology to prior work on automated test generation, but
with distinct goals. Closest to our work is prior research that
automatically produces mock objects for use with generated
tests. For instance, Galler et al. [7] generate test inputs by
automatically extracting mock object stubs that satisfy user-
specified preconditions. However, these mock objects are
limited in expressiveness; for example, the values returned
from mocked methods are determined statically and may
not depend on the inputs or state of the object under test.
Our approach solves constraints dynamically and so does
not suffer from these limitations.

6.2 Declarative Execution
The idea of employing a mixed interpreter for mock ob-

jects was mentioned by Rayside et al. [35], yet the idea was
not investigated concretely.

We use PBnJ [12] to enable declarative execution. Other
recent declarative execution systems include Squander [17]
for Java and Kaplan [19] for Scala. Squander also uses
Kodkod for finding models. In PBnJ the specifications are
expressed over concrete Java variables in the program. Squan-
der, on the other hand supports abstract, logical variables
that are used for specification purposes only. Abstraction
and concretization functions can be then provided to relate
the concrete and logical states of a given program. Kaplan
utilizes the state-of-art SMT solver Z3 [27] for constraint
solving. As we discussed, Kodkod has a clear efficiency dis-
advantage compared to SMT solvers for problems involving
primitive values such as integers.

7. CONCLUSIONS
We have presented a new approach to creating mock ob-

jects. Programmers write high-level specifications for the
methods in an API being mocked, and a constraint solver
dynamically executes these specifications. As a result, code
that depends on the API can be tested exactly as if it is
invoking a “real” implementation of the API. Further, we
show that executable specifications naturally support other
testing tasks, in particular the initialization of state for both
the object under test as well as the mocked objects.

Our implementation of declarative mocking for Java ex-
tends the PBnJ executable specifications tool, and we have
used the implementation both to explore the potential capa-
bilities of the approach as well as to directly compare with
the usage of traditional mock objects on existing applica-
tions. Declarative mocking of behavior is most beneficial for
unit tests where there is a strong relation between the logic
of the unit test and the stubbed component, and declara-
tive data mocking can often simplify initialization code and
increase test coverage.

8. ACKNOWLEDGMENTS
We thank Alan Borning for motivating this work. This

work is supported by the National Science Foundation under
award CNS-1064997.

9. REFERENCES
[1] Beck, Test Driven Development: By Example.

Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2002.

[2] R. C. Martin, Agile Software Development: Principles,
Patterns, and Practices. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2003.

[3] T. Mackinnon, S. Freeman, and P. Craig, “Extreme
programming examined,” in Extreme programming
examined, G. Succi and M. Marchesi, Eds. Boston,
MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2001, ch. Endo-testing: unit testing with mock
objects, pp. 287–301.

[4] S. Freeman, T. Mackinnon, N. Pryce, and J. Walnes,
“Mock roles, objects,” in OOPSLA ’04. New York,
NY, USA: ACM, 2004, pp. 236–246.

[5] G. L. Alwin Ibba, Jeremy Whitlock, “Mockrunner,”
http://mockrunner.sourceforge.net.

[6] S. Faber, “Mockito: Simpler and better mocking,”
http://code.google.com/p/mockito.

[7] S. J. Galler, A. Maller, and F. Wotawa,
“Automatically extracting mock object behavior from
design by contract specification for test data
generation,” in AST ’10. New York, NY, USA: ACM,
2010, pp. 43–50.

http://mockrunner.sourceforge.net
http://code.google.com/p/mockito

[8] N. Tillmann and W. Schulte, “Mock-object generation
with behavior,” in Proceedings of the 21st IEEE/ACM
International Conference on Automated Software
Engineering, ser. ASE ’06. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 365–368.

[9] S. Kong, N. Tillmann, and J. d. Halleux, “Automated
testing of environment-dependent programs - a case
study of modeling the file system for pex,” in
Proceedings of the 2009 Sixth International Conference
on Information Technology: New Generations, ser.
ITNG ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 758–762.

[10] M. R. Marri, T. Xie, N. Tillmann, J. de Halleux, and
W. Schulte, “An empirical study of testing
file-system-dependent software with mock objects,” in
AST’09, 2009, pp. 149–153.

[11] L. Zhang, X. Ma, J. Lu, T. Xie, N. Tillmann, and
P. de Halleux, “Environmental modeling for
automated cloud application testing,” Software, IEEE,
vol. 29, no. 2, pp. 30 –35, march-april 2012.

[12] H. Samimi, E. D. Aung, and T. Millstein, “Falling
back on executable specifications,” in Proceedings of
the 24th European conference on Object-oriented
programming, ser. ECOOP’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 552–576.

[13] G. T. Leavens, A. L. Baker, and C. Ruby,
“Preliminary design of jml: a behavioral interface
specification language for java,” SIGSOFT Softw. Eng.
Notes, vol. 31, no. 3, pp. 1–38, 2006.

[14] M. Barnett, R. M. Leino, and W. Schulte, “The Spec#
programming system: an overview,” in CASSIS ’05,
ser. LNCS, G. Barthe, L. Burdy, M. Huisman, J.-L.
Lanet, and T. Muntean, Eds., vol. 3362.
Springer-Verlag, 2005, pp. 49–69.

[15] B. Meyer, “Design by contract: Making object-oriented
programs that work,” in TOOLS (25), 1997, p. 360.

[16] R. M. Leino, “Specifying and verifying software,” in
ASE ’07. New York, NY, USA: ACM, 2007, pp. 2–2.

[17] A. Milicevic, D. Rayside, K. Yessenov, and
D. Jackson, “Unifying execution of imperative and
declarative code,” in ICSE ’11. New York, NY, USA:
ACM, 2011, pp. 511–520.

[18] E. Torlak, “A constraint solver for software
engineering: Finding models and cores of large
relational specifications,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2009.

[19] A. S. Köksal, V. Kuncak, and P. Suter, “Constraints
as control,” in POPL ’12. New York, NY, USA:
ACM, 2012, pp. 151–164.

[20] JStock, “Jstock,” http://jstock.sourceforge.net.

[21] JDBC, “Jdbc,” oracle Corporation. http://docs.oracle.
com/javase/6/docs/technotes/guides/jdbc.

[22] K. R. Sollins, “The TFTP protocol (revision 2),”
Internet RFC 1350, July 1992.

[23] Hadoop, “Apache hadoop,” http://hadoop.apache.org.

[24] H. Tang, “Mumak: Map-reduce simulator,” https:
//issues.apache.org/jira/browse/MAPREDUCE-728.

[25] G. Wang, A. R. Butt, H. Monti, and K. Gupta,
“Towards synthesizing realistic workload traces for
studying the hadoop ecosystem,” in MASCOTS ’11.
Washington, DC, USA: IEEE Computer Society, 2011,
pp. 400–408.

[26] M. T. Jones, “Scheduling in hadoop,”
http://www.ibm.com/developerworks/linux/library/
os-hadoop-scheduling/index.html.

[27] L. De Moura and N. Bjørner, “Z3: an efficient smt
solver,” in TACAS’08/ETAPS’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 337–340.

[28] J. de Halleux and N. Tillmann, “Moles: tool-assisted
environment isolation with closures,” ser. TOOLS’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp.
253–270.

[29] M. Achenbach and K. Ostermann, “Testing
object-oriented programs using dynamic aspects and
non-determinism,” in ETOOS ’10. New York, NY,
USA: ACM, 2010, pp. 3:1–3:6.

[30] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst,
“Automatic test factoring for java,” in ASE ’05. New
York, NY, USA: ACM, 2005, pp. 114–123.

[31] D. Qi, W. Sumner, F. Qin, M. Zheng, X. Zhang, and
A. Roychoudhury, “Modeling software execution
environment,” in Reverse Engineering (WCRE), 2012
19th Working Conference on, 2012, pp. 415–424.

[32] M. Afshari, E. T. Barr, and Z. Su, “Liberating the
programmer with prorogued programming,” in
Onward! ’12. New York, NY, USA: ACM, 2012, pp.
11–26.

[33] J. Henkel, C. Reichenbach, and A. Diwan, “Developing
and debugging algebraic specifications for java
classes,” ACM Trans. Softw. Eng. Methodol., vol. 17,
no. 3, pp. 14:1–14:37, Jun. 2008.

[34] D. Willmor and S. M. Embury, “An intensional
approach to the specification of test cases for database
applications,” in ICSE ’06. New York, NY, USA:
ACM, 2006, pp. 102–111.

[35] D. Rayside, A. Milicevic, K. Yessenov, G. Dennis, and
D. Jackson, “Agile specifications,” in OOPSLA ’09.
New York, NY, USA: ACM, 2009, pp. 999–1006.

http://jstock.sourceforge.net
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc
http://hadoop.apache.org
https://issues.apache.org/jira/browse/MAPREDUCE-728
https://issues.apache.org/jira/browse/MAPREDUCE-728
http://www.ibm.com/developerworks/linux/library/os-hadoop-scheduling/index.html
http://www.ibm.com/developerworks/linux/library/os-hadoop-scheduling/index.html

	Introduction
	Motivating Example
	Declarative Mocking
	Implementation and Evaluation

	Executable Specifications
	Declarative Mocking
	Mocking Functionality
	Mocking Data and Environment
	The assume Statement
	The unique Modifier

	Exploratory Study
	Applications
	JStock—Mocking Webserver Data
	JDBC—Mocking Database Behavior and Data
	TFTP—Mocking Errors and Network Nondeterminism in a Client-Server Protocol
	Hadoop—Mocking Cloud Behavior and Environment

	Advantages and Disadvantages
	Advantages
	Disadvantages of Specifications in General
	Limitations Specific to PBnJ

	Evaluation
	Selection Criteria
	Strategy
	Benchmarks
	Phase A Results
	Phase B Results
	When Specifications Were Useful
	When Specifications Were Not Useful
	Results

	Related Work
	Mock Objects
	Declarative Execution

	Conclusions
	Acknowledgments
	References

